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a b s t r a c t

Neural network models represent an important tool of Artificial Intelligence for fuel cell researchers in
order to help them to elucidate the processes within the cells, by allowing optimization of materials,
cells, stacks, and systems and support control systems. In this work three types of neural networks,
that have as common characteristic the supervised learning control (Multilayer Perceptron, Generalized
Feedforward Network and Jordan and Elman Network), have been designed to model the performance
of a polybenzimidazole-polymer electrolyte membrane fuel cells operating upon a temperature range of
100–175 ◦C. The influence of temperature of two periods was studied: the temperature in the condition-
ing period and temperature when the fuel cell was operating. Three inputs variables: the conditioning
temperature, the operating temperature and current density were taken into account in order to evalu-
Neural network
Modeling

ate their influence upon the potential, the cathode resistance and the ohmic resistance. The Multilayer
Perceptron model provides good predictions for different values of operating temperatures and potential
and, hence, it is the best choice among the study models, recommended to investigate the influence of
process variables of PEMFCs.
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. Introduction

Polymer electrolyte membrane fuel cells (PEMFCs) are receiving
growing interest for many potential power sources applications,
oth stationary and portable. The typical electrolyte membranes
sed in PEMFCs are Nafion or other perfluorcarbon sulphonic acid
embranes. These have some limitations due to the presence of
ater required to be proton conductor and then, the tempera-

ure is limited to 90 ◦C at atmospheric pressure. Moreover, working
bove this temperature, the catalysts of PEMFCs are more tolerant
o the presence of contaminants, overall higher operating temper-
ture eliminates CO poisoning by eliminating CO occlusion of the
latinum sites. In order to overcome this limitation, it has been
roposed to raise the operating temperature [1–3]. This increase

mplies that all the materials used for this purpose must withstand
hose conditions (thermal stability), aside from having the adequate

roperties for their use in PEMFCs (e.g. proton conductivity for
he polymeric membrane, catalytic activity for the electrocatalyst,
hemical stability, mechanical stability, reliability, durability).
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Polybenzimidazole (PBI), the polymer used in this work, can
be included within the group of polymeric electrolytes proposed
for High Temperature PEMFCs. When PBI is impregnated with
phosphoric acid, it presents some interesting properties such as
increasing of conductivity up to 200 ◦C which is acceptable and ris-
ing of thermal and chemical stability above the level. Thus, acid
doped PBI can be used as polymeric electrolyte in High Temper-
ature PEMFC [4–8]. A possible limitation of this system is the
H3PO4 stability within the PBI system, known as phosphoric acid is
self-dehydrated and generates oligomers of the original acid, e.g.,
pyrophosphoric acid, at 140 ◦C [9] which leads to low conductivity
[5]. Consequently, this undesirable process would produce a grad-
ual decay of the cell performance. Thus, this process may degrade
the cell performance along the time.

Detailed modeling of PEMFC has been of considerable interest
in predicting the fuel cell performance and also for use in vari-
ous systems engineering activities. Hence, there has been recent
interest in building simply, cost reductive and time saving. Among
the many possibilities, artificial neural networks (ANN) represent a

good alternative choice [10].

The use of neural networks has become increasingly recom-
mended for applications where the mechanistic description of the
interdependence between variables is either unknown or very com-
plex. Their parallel organization and their capability to learn from

http://www.sciencedirect.com/science/journal/03787753
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Nyquist plots corresponding to Impedance spectra the experimen-
tal data were fit to an equivalent circuit [24]. This consisted of a
combination of an uncompensated resistance, accounting for the
ohmic resistance of the system, with a parallel circuit containing a

Table 1
Experimental data.

Conditioning
temperature (◦C)

Operating
temperature (◦C)

Label for
experiment

100 100 P11
125 125 P22
150 150 P33
175 175 P44
J. Lobato et al. / Journal of Po

he behavior of many chemical processes permit good solutions
o problems where multiple constraints must be satisfied simul-
aneously, the high functionality and the rules are implicit than
xplicit.

Generally, there are some specific issues for neural networks
hich potential users should be aware of. Concerning the neural
etwork modeling, some advantages can be mentioned. The neural
etworks have the capability to learn what happens in a process,
ithout modeling the physical and chemical laws that govern the

ystem. Consequently, they are very useful in approximation of any
ontinuous nonlinear functions. The disadvantages seem to be upon
he necessity in obtaining a perfect neural network with the experi-

ental or operational history data. In other words, neural networks
eed large amount of good quality data for its training, which is nor-
ally difficult to obtain in practice. If they are properly trained and

alidated, the neural network models could be used to make accu-
ate predictions on the process behavior, hence, leading to improve
rocess optimization and control performance [11].

Neural network topologies are correlated with the nature of
pplication and the type of the chemical system, e.g.: feedforward
eural networks, for stationary conditions [12,13], recurrent neural
etworks, useful for long term predictions [14], stacked neural net-
orks composed from some different or identical neural networks

15], hybrid models, which combine simplified phenomenological
odels with the neural ones [16,17], or neural network trained with

tatic and dynamic operating data [18].
There are many reported studies about ANN modeling of fuel

ells parameters based on simulated or experimental data [19–22].
umbur et al. [19] have used a feedforward error back propa-
ation network based on four correlated input parameters (the
on-wetting phase saturation, the compression pressure and the
TFE content of the DM (fuel cell diffusion media)) designed for one
utput (the capillary pressure). Rouss and Charon [20] have applied
multi-input and multi-output model implying one hidden multi-

ayer perceptron neural network combined with a time regression
nput vector approach for the mechanical nonlinear behavior of

proton exchange membrane fuel cell system with nine outputs.
aengrung et al. [21] have studied and compared the performance
redictions of a commercial proton exchange membrane (PEM) fuel
ell system using two neural networks types: a back propagation
ith 2 hidden layers and a radial basis function networks—all of

hem based on two inputs (air flow and stack temperature) in order
o determine the two outputs (stack voltage and stack current). In
ther case, Bao et al. [22] have implied a feedforward neural net-
ork for the air stream and hydrogen flow with recirculation in a

EM fuel cell system.
In this paper, a methodology based on simple neural networks

ith one single hidden layer was applied to study the performance
f a polybenzimidazole-based PEMFC operating at high temper-
ture, 100–175 ◦C. The influences of conditioning and operating
emperatures and potential on the performance of the PEMFC were
valuated using three types of feedforward neural networks: Mul-
ilayer Perceptron (MLP), Generalized Feedforward Network (GFF)
nd Jordan Elman Network (JEN).

. Experimental

.1. Preparation of the membrane-electrode assemblies

In order to prepare the electrodes, it was followed the follow-

ng procedure. On top of a gas diffusion media (Toray Graphite
aper, TGPH-120, 350 �m thick, 20% wet-proofed, ETEK Inc.), it was
eposited by N2-spraying a micro-porous layer (MPL) consisting
f 1 mg cm−2 Vulcan XC-72R Carbon Black (Cabot Corp.) and 40%
TFE (TeflonTM Emulsion Solution, Electrochem Inc.). Next, it was
ources 192 (2009) 190–194 191

also N2-sprayed the catalyst layer, composed by Pt/C catalyst (20%
Pt on carbon black, ETEK Inc.), PBI ionomer (5 wt.% PBI in N,N′-
dimethylacetamide, DMAc) and DMAc as dispersing solvent. After
depositing the catalyst layer, the electrodes were dried at 190 ◦C for
2 h. Afterwards, the electrodes were wetted with a solution of 10%
H3PO4 with a loading of 30 mg cm−2. Electrodes were left to absorb
the acid overnight.

For the preparation of the MEA, a PBI membrane was taken out
from an 80 wt.% phosphoric acid bath. Doping level acquired by
the membrane was 6.5 molecules of acid per polymer repeating
unit. The superficial acid onto the membrane was thoroughly wiped
off with filter paper, and subsequently, it was used to prepare the
MEA. In order to fabricate it, the doped membrane was sandwiched
between a couple of electrodes, hot-pressing the whole system at
150 ◦C and 100 kg cm−2 for 7 min. Once the MEA was ready, it was
inserted into the cell. Active area of electrodes was 4.65 cm2.

2.2. Fuel cell tests

Cell hardware consisted of two bipolar plates made of graphite
(Ralph Coidan, UK) into which it was machined channel with par-
allel geometry. Within the graphite plates, heating rods were fitted
in order to heat the cell up. During the performed measurements,
the cell was fed directly from the compressed bottles with pure
hydrogen and oxygen at a flow rate of 0.2 l min−1 and atmospheric
pressure without any humidification system. It was used oxygen at
high stoichometry to avoid any diffusive limitation that would be
boost with air [23] because the aim of this work was to study the
pure temperature effects. Temperature was controlled with the aid
of a temperature controller (CAL 3300, Cal Controls Ltd., UK).

The procedure to obtain polarization curves and impedance
spectra can be depicted as follows. Firstly, the cell was kept at
one temperature for 24 h, monitoring the current at a constant
potential of 0.5 V. Afterwards, polarization curves and impedance
spectra were consecutively recorded at the four temperatures used
in this study, starting from the temperature in which the cell was
conditioned and continuing from the lowest temperature to the
highest one. Polarization curves were measured with a potentio-
stat/galvanostat. Unfortunately, this limited the upper limit of the
current to 1 A, so that curves had to be stopped at a current den-
sity of 0.215 A cm−2. Once swept the four temperatures, the cell was
again left for 24 h at the next temperature. The conditioning pro-
cedure was carried out from the lowest temperature (100 ◦C) up
to the highest one (175 ◦C). Experiments were labeled as collected
in Table 1. Impedance spectra were recorded by the Frequency
Response Analyzer (FRA) Module of the potentiostat/galvanostat at
a potential of 0.5 V. Frequency ranged from 10 kHz down to 10 mHz,
with a potential wave of 0.05 V. In order to help to interpret the
125 100 P21
125 150 P23
125 175 P24
100 175 P14
150 175 P34
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Fig. 3a and b present some examples for the decrease of the
potential with current density obtained experimentally and pre-
dicted with MLP (3:6:3). They show that cell performances grow
when temperatures increase from 100 to 150 ◦C. Thus, at 0.6 V, cur-
rent densities are 27.6 mA cm−2 at 100 ◦C, 31.6 mA cm−2 at 125 ◦C,
92 J. Lobato et al. / Journal of Po

harge transfer resistance and a constant phase element related
o the hydrogen oxidation, added in order to explain the small
oop present at high frequency, and finally, another parallel cir-
uit containing a new constant phase element and the polarization
esistance for the oxygen reduction reaction (ORR). The appearance
f a unique loop for the ORR impedes the distinction between the
elative contributions of the charge transfer and diffusional pro-
esses, becoming both together in the polarization resistance. More
nformation can be obtained from our previous work [24].

. Process modeling

The transformation of a set of inputs into a set of outputs repre-
ents the main problem of a neural network modeling. The neural
etwork model is obtained by training with input/output pairs,
hich have to be related by transformation which is being modeled.

he adjustment of the neural network function to experimental
ata (learning process or training) is based on a nonlinear regres-
ion procedure. Training is done by assigning random weights to
ach neuron, evaluating the output of the network and calculating
he error between the output of the network and the known results
y means of an error or objective function. When the error becomes
oo large, the weights have to be adjusted and the process goes back
or evaluate the output of the network. This cycle is repeated till the
rror becomes low or the convergence criterion is satisfied [25].

The main advantage of a neural network consists of the capac-
ty of generalization (within limits) from these examples to other
nputs that were not seen yet. As a general rule, the model is sought
rom experimentally available sets of data that clearly contain a
umber of very interesting relationships, feature correlations and
ther information which cannot be deduced in a straightforward
anner from the first principles, by analytical solution or even with

umerical methods. Many papers have been applied a multilayered,
eedforward, fully connected network of perceptions because of its
heory’s simplicity, ease of programming and good results obtained.
hat is because its universal function in sense of network’s topology
as allowed to vary freely and it can take the shape of any broken
urve [26].

In the present paper three types of neural networks that have
s common characteristic the supervised learning control, i.e., MLP,
FF and JEN, has been used. MLP can approximate any input/output
ap, but they train slowly and require lots of training data. GFF

etworks are a generalization of MLP, the difference being into
he connections that can jump over one or more layers. JEN net-
orks supply the multilayer perceptron with context units, which

re processing elements that remember past activity. Context units
rovide the network with the ability to extract temporal informa-
ion from the data. In all three cases, the hyperbolic tangent axon
TanhAxon) transfer function was used [27]:

= 1 − e−2x

1 + e−2x
(1)

The training and validation of the neural models were per-
ormed with 16 series of experimental data obtained in our lab [23].
0% of the whole set of data are kept for validation phase repre-
enting unseen data for the neural network. The neural networks
esigned for process under study have 3 input variables: condition-

ng temperature (Temperature 1, ◦C), the operating temperature
Temperature 2, ◦C) and potential (mV) and 3 outputs: the cur-

ent density (mA cm−2), the cathode resistance (�) and the ohmic
esistance (m�).

Many neural networks were trained and evaluated based on
ean square error (MSE) and correlation (r)—the concordance

etween experimental data and neural network prediction. The
Fig. 1. The evolution of the MSE in the training process for the chosen neural models.

MSE was computed as:

MSE =

⎛
⎝

P∑
j=1

N∑
i=1

(dij − yij)
2

⎞
⎠/ (N · P) (2)

where: P is the number of output processing elements, N is the
number of exemplars in the data set, yij is the network output for
exemplar i at processing element j, and dij is the desired output for
exemplar i at processing element j.

The best neural networks, which balance the size and the
performance were: MLP (3:6:3) with MSE = 0.0000737, r = 0.998,
JEN (3:6:3) with MSE = 0.00043, r = 0.9961 and GFF (3:6:3) with
MSE = 0.00265, r = 0.9915. Fig. 1 presents the training process for
these networks illustrated through the decrease of the MSE with
the training cycles (epochs).

MLP (3:6:3) means a network of MLP type with 3 input neurons
corresponding to the 3 input variables, one hidden layer with 6
neurons and 3 output neurons for the 3 output variables (Fig. 2).

4. Results and discussion

The performances of the three types of neural networks devel-
oped for the polymer electrolyte membrane fuel cell were evaluated
comparatively.

The JEN (3:6:3) and GFF (3:6:3) present a higher training time
and a lower efficiency comparatively to MLP (3:6:3). Consequently,
the Multilayer Perceptron proves its universal character for approx-
imation any continuous nonlinear function.
Fig. 2. The topology of the MLP (3:6:3).
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Fig. 4. Potential obtained experimentally and predicted by MLP (3:6:3) in the vali-
dation stage.

Thus, it could be reached a peak power density over 90 mW cm−2

approximately at intermediate operating temperature and low con-
ditioning temperature. Higher values of operating temperature,
200 ◦C, do not lead to an improvement in the performance of the
ig. 3. Potential vs. current density obtained experimentally and predicted with
LP (3:6:3). (a) Conditioning temperature equal to operating temperature; (b) con-

itioning temperature different to operating temperature.

nd 32.2 mA cm−2 at 150 ◦C. However, at 175 ◦C, current density
s 28.3 mA cm−2. In principle, it should be expected an increase
f the cell performance as temperature goes up, as consequence
f higher proton conductivity through the PBI membrane and
nhanced electrodes kinetic. The notable increasing of the cell per-
ormance is observed at 100–125 ◦C, whereas the sensitively small
ncreasing is presented at 125–150 ◦C. Also the performance decays
re observed at 175 ◦C compared to the performance at 150 ◦C
24].

The neural model fits well the experimental data in the train-
ng stage. Therefore, the network learned well the behavior of the
rocess.

In the validation stage the best prediction was reached by MLP
etwork. Figs. 4–6 show the difference between the experimental
ata (cathode resistance, ohmic resistance and potential, respec-
ively) and the predicted ones by the MLP model for nine examples.

It can be observed a good agreement between experimental and
redicted data. Consequently the model could be applied to make
upplementary predictions of the fuel cell process for working con-
itions which not belongs to experimental data set.

Very interesting results have been obtained from supplementary
redictions. Different combinations of both temperatures between
00 to 120 ◦C for Temperature 1 (conditioning temperature) and 100
o 200 ◦C for Temperature 2 (operating temperature) were studied.
n Table 2 the values for conditioning temperature (Temperature

), operating temperature (Temperature 2), resistance, and cur-
ent density are shown. The numbers 1–5 correspond to different
ombinations of temperatures where high power was observed.
he numbers 6–9 contain experimental data in order to com-
are the power density obtained in different working conditions.
Fig. 5. Ohmic resistance obtained experimentally and predicted by MLP (3:6:3) in
the validation stage.
Fig. 6. Cathodic resistance obtained experimentally and predicted by MLP (3:6:3)
in the validation stage.
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Table 2
Predictions obtained with MLP (3:6:3).

No. Temperature 1 (◦C) Temperature 2 (◦C) Current density
(mA cm−2)

Cathodic resistance
(� cm2)

Ohmic resistance
(m� cm2)

Potential (mV) Power
(mW cm−2)

1 120 150 180.4 1.81 153.9 460 82.92
2 100 160 180.4 1.30 123.2 505 91.17
3 105 160 180.4 1.35 127.4 503 90.69
4 110 160 180.4 1.39 131.6 499 90.09
5 110 200 116.0 0.74 103.7 568 65.92
6 125 150 215.0 1.81 159.0 394 84.73
7 125 175 244.1 1.25 133.0 435 106.18
8 100 175 215.0 0.9
9 150 175 215.0 1.4
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[28] O.E. Kongstein, T. Berning, B. Borresen, F. Seland, R. Tunold. Energy 32 (2007)
ig. 7. Potential vs. current density obtained with MLP (3:6:3) (1–4) and experimen-
ally (5–8) (see Table 2).

uel cell, as can be seen from the Fig. 7 and Table 2. The perfor-
ance obtained in this work is not very high. Thus, Kongstein et al.

eported 250 mW cm−2 approximately at 125 ◦C but with 0.6 mg Pt
oading on the cathode [28], Asensio and Gómez-Romero reported
peak power at 130 ◦C and humidified flows of 175 mW cm−2 for a
BI·6.4 H3PO4, 100 �m thick and 165 mW cm−2 approximately for
ABPBI·2.8 H3PO4, 70 �m thick [29]. But, it must be taking into

ccount that the present work was carried out without an opti-
ization of the different components of the MEA. Recent results

n our lab have reached 550 mW cm−2 approximately at 125 ◦C
nd 1.6 A cm−2. With respect to resistances, ohmic resistances of
00 m� cm2 at 200 mA cm−2 and 150 ◦C for a PBI·H3PO4, have been
eported [30] or 120 for a commercial PBI-based MEA [31]. Polariza-
ion resistance of 0.28 � cm2 at 200 mA cm−2 and 160 ◦C has been
lso reported [31] but not information about the Pt loading used
as given.

. Conclusions

This work presents a methodology based on neural network
odeling for an electrochemical process of a PBI-based fuel cell.

omparing the three types of neural model tested in this paper, we
oncluded that the MPL neural network showed the best correlation

ith experimental data, both in the training and validation steps.
ccording with the predictions of the model and experimental data,

he best performance of the power was at 150 ◦C for both studied
emperatures (conditioning temperature and operating tempera-
ure).

[
[
[

3 108.3 493 106.02
9 181.3 418 89.90

The neural network modeling technique has as main characteris-
tic to avoid the complex calculation of the modeling by mechanism
and provides a basic guide for design and analysis of the PEMFC
power systems and for the optimization of cell performance.
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